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Abstrat

We present studies of thermal noise as a �rst step toward modeling the

ANITA trigger system using time-domain waveforms in the mainland simula-

tion. We simulate time dependent noise in a slie of bandwidth similar to one

of the ANITA hannels and ompare to measurements from a noise diode in

the lab. We examine the behavior of the output of a simulated power integra-

tor for di�erent integration times and response funtions, and show that an

exponential distribution is only a good model of that output for a very spei�

set of parameters. With an exponential response funtion for the trigger diode,

we ahieve trigger rates similar to those reported from diode measurements,

giving us on�dene that we have developed the basi tools that we need to

proeed to modeling the trigger response to Askaryan signals on thermal noise.

We append a review of relevant features of thermal noise, and how to make

omparisons between instantaneous and envelope detetion measurements.

1 Motivation for Modeling Noise in the Time Domain

An understanding of noise is ritial to simulating the behavior of the ANITA instru-

ment. Ideally, we would like to simulate a trigger by adding a time-domain noise trae to a

time-domain signal, and applying a model of a diode to the waveform. The latest version (v.

1.22) of the mainland ANITA Monte Carlo heks for a trigger by adding the peak instanta-

neous signal voltage to thermal noise in the frequeny domain. The thermal noise is modeled

by a Gaussian distribution. If the absolute value of the resulting voltage is greater than a

preset threshold, the program registers a trigger. The atual system will trigger based on the

output of a diode whih integrates a time-domain signal. Inlusion in the Monte Carlo of a

more realisti trigger proess will improve the simulation's auray, and inrease on�dene

in its results. We will also be able to produe a simulation of the atual data that will be

reorded during the ANITA experiment. As a �rst step toward a full trigger simulation, we

onsider simulations and measurements of 200 MHz bandwidth noise suh as will be enoun-

tered by eah hannel of ANITA, and ompare to laboratory measurements. The work in

this note is motivated by arguments and results from ANITA Note 68 [1℄.
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2 How We Simulate Noise

Thermal noise is represented by the sum of a series of phasors with random phase, eah

orresponding to a di�erent frequeny [2, 3℄. To onstrut simulated noise, we reate a signal

in the frequeny domain in whih all frequenies in band have unit amplitude and a phase

hosen randomly from a at distribution. (All frequenies are given unit amplitude beause

thermal noise is at. True ANITA noise will not be exatly at, but the exat form an

be easily added to our simulations when data is available.) Eah bin in frequeny has its

own phasor, and, beause of the properties of the FFT, the bin size is determined from the

duration of noise trae desired. The bin size is spei�ed by �f =

1

T

N

, where T

N

is the trae

duration. The time-domain signal is then obtained by taking an inverse Fourier transform of

the frequeny domain signal. All simulated noise traes desribed in this note were generated

using a at frequeny spetrum from 550 MHz to 750 MHz, and sampled every 0.1 ns in the

time domain.

3 Laboratory Measurements of Noise

In order to ompare measured noise to simulated noise, we took measurements from

a noise diode in the lab. The output of a Mironetis noise diode with ENR � 21 dB was

ampli�ed by 33 dB, then passed through a high pass 550 MHz �lter and a low pass 750 MHz

�lter. The 3 dB points of the resulting signal are at approximately 530 MHz and 750 MHz.

The FFT of the noise signal, as taken by the sope, is shown in Figure 1. We reorded traes

50 �s long, sampled every 0.1 ns.

4 Charateristis of Passband Noise

We ompare simulated noise to traes of measured noise reorded in the same band.

Figure 2 has four typial setions of a simulated noise trae, and Figure 3 shows four setions

of the same length of a measured noise trae. We generated the simulated noise using the

method desribed in Setion 2, and details of our noise measurements are given in Setion 3.

Both measured and simulated noise are sampled every 0.1 ns. The simulated noise an be

seen to be similar in appearane to the measured noise. Note that the typial envelope period

is on the order of 5 ns (=

1

200 MHz

), orresponding to the bandwidth of 200 MHz, and the

osillations within the envelope are around 1.5 ns (�

1

650 MHz

), orresponding to the enter

frequeny of 650 MHz (as if it were a arrier).
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Figure 1: FFT of noise diode output passed through HP550 and LP750 �lters.

4.1 Simulated Noise

We now examine the simulated noise more deeply to see if it has the harateristis we

expet. We begin with the simplest ase where all noise measurements are independent of

eah other. To do this, we reate a large number of simulated noise traes, and take a single

measurement from eah trae. A di�erent noise trae is used for eah measurement in order

to be absolutely ertain that there are no orrelations between suessive measurements.

In Figure 4, we plot instantaneous unorrelated voltages from the simulated noise

traes. Using a �t provided by the ROOT libraries, we see that the distribution is Gaussian,

with hV i = 0 V , and � = V

rms

= 1 V . This is what we would expet; the distribution

is Gaussian, as expeted from the entral limit theorem. It has a mean of 0 beause the

originating frequeny distribution had no DC omponent. The RMS is 1, as expeted when

eah bin in frequeny has an amplitude of 1.

Figure 5 shows the distribution of envelope amplitudes from simulated noise. To

reate this distribution, we used an idealized envelope amplitude detetor, as de�ned in the

following equation:

a(t)

�

=

p

2 �

q

1

T

�

P

N�1

i=0

(V (t��t � i))

2

�t

�

: (1)

With �t =

T

N

, where �t is the time step, T is the window of time where we perform the

sum, and N is the number of disrete points over whih we sum. In this ase, we take
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Figure 2: Simulated noise in a band from 550 to 750 MHz. Traes are of lengths 200 ns,

100 ns, 50 ns, and 25 ns, respetively.
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Figure 3: Measured noise in a band from 530 to 750 MHz. Traes are of lengths 200 ns,

100 ns, 50 ns, and 25 ns, respetively.
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�t = 0:1 ns and T = 0:7 ns. Here we hoose T to be the length of one half-osillation at

the enter frequeny (0:7 ns �

1

2

�

1

650 MHz

). Note that we normalize by �. We expet a(t)

to approximate the magnitude of the envelope at time t with these hoie of parameters

beause the average voltage over one half-osillation of the enter frequeny should be the

peak of that osillation divided by

p

2. Indeed, the distribution of a(t)=� in Figure 5 losely

follows the overlaid Rayleigh distribution with � = 1, as we expet for the envelope of noise

with � = 1 V [2, 3℄. We note that another approximation of the envelope amplitude an be

obtained by taking a linear interpolation between the two nearest peaks to the time of the

measurement. The distribution obtained from this method is very similar to that given by

a(t) de�ned in Equation 1.

Finally, we model an idealized envelope power detetor with simulated noise as

its input and plot the result in Figure 6. The idealized envelope power detetor is modeled

using

I(t)

hIi

=

2

N

�

P

N�1

i=1

(V (t��t � i))

2

�t

2�

2

; (2)

where �t is again given by �t =

T

N

with T = 0:7 ns and �t = 0:1 ns. This expression an

be obtained from Equation 1, using Equation 17. Note that we now normalize by hIi = 2�

2

,

as done by Goodman 4.2-8 [2℄. The distribution of I(t)=hIi losely follows the overlaid

exponential distribution (Figure 6) as we expet, following the disussion in Setion A.2 and

Referene [2℄. Note also that the mean of the distribution is 1, indiating that our expression

for hIi is orret.

4.2 Measured Noise

We now analyze the sope data in the same way as we did with the simulated noise in

Setion 4. As it is impratial to reord 100,000 distint sope measurements, the distribu-

tions all ome from a single noise trae of duration 50 �s. Measurements are taken every

10 ns along the trae to ensure that the distributions are reated from unorrelated mea-

surements. (A 10 ns shift suÆes to obtain unorrelated measurements, sine the envelope

size is 5 ns =

1

200 MHz

). The sope data ontains a DC o�set not present in the simulated

traes, and a di�erent �. For better omparison to simulated noise traes, the DC o�set is

removed by adding the same onstant to all measured voltages. We also sale the amplitudes

by multiplying all voltages by the same onstant, suh that the result has � = 1 V .

Plotting unorrelated instantaneous voltages from the laboratory measurements

gives us a Gaussian distribution (Figure 7), as we expet. Applying the idealized envelope

amplitude detetor desribed in Equation 1, we obtain a Rayleigh distribution (Figure 8),

just as in the ase of simulated noise. Finally, using the idealized envelope power detetor

desribed in Equation 2, we �nd an exponential distribution (Figure 9). We see, then, that

our method for generating simulated noise produes distributions whih agree both with
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Figure 4: Distribution of unorrelated voltages from a simulated noise trae. The overlaying

line is a Gaussian �t, with parameters given in upper right.
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Figure 5: Distribution of randomly sampled unorrelated envelope heights from a simulated

noise trae, using Equation 1, T = 0:7 ns and �t = 0:1 ns. The red line is a normalized

Rayleigh distribution with � = 1. (Not a �t.)
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Figure 6: Distribution of randomly sampled unorrelated instantaneous powers from sim-

ulated noise. The distribution is �t to an exponential, with parameters in the box in the

upper right.

theoretial expetations, and with laboratory measurements of noise.

5 Noise Trigger Rates

Our ultimate goal is to inorporate this simulated noise into the ANITA Monte Carlo

to allow for more realisti simulation of triggers. The true ANITA will trigger based on a

diode reading of the inoming RF signal. The diode output is an integration of reeived

power, with some response funtion. As a way to begin understanding the properties of suh

an integration, and to begin working up to a full diode simulation, we used the following

sum on our noise traes:

F (t)

hF (t)i

=

1

N

�

P

N�1

i=0

(V (t��t � i))

2

� r(�t � i) ��t

hF (t)i

: (3)

Note that, while in Equation 2 we had a de�ned expression for hIi, there is no orresponding

expression for hF (t)i. We determine hF (t)i by plotting the full distribution of F (t) and

�nding the average. Other than this, Equation 3 di�ers from Equation 2 only by the appear-

ane of r(t), the \response funtion" whih desribes the weight given to eah term in the

sum. To date, we have experimented with two response funtions. The �rst is a onstant,
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Figure 7: Distribution of unorrelated voltages from sope data. Blak line is a Gaussian
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envelope_hist

Entries  5051

Mean    1.268

RMS    0.6495

Underflow       0

Overflow   0.01486

)σAmplitude of Envelope (a(t) / 
0 0.5 1 1.5 2 2.5 3 3.5 4

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
envelope_hist

Entries  5051

Mean    1.268

RMS    0.6495

Underflow       0

Overflow   0.01486

Figure 8: Distribution of unorrelated envelope amplitudes from sope data. Red line is a

normalized Rayleigh distribution with � = 1. (Not a �t.)
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Figure 9: Distribution of unorrelated envelope powers from sope data. Red line is an

exponential �t, with parameters given in the box at upper right.

r(t) = 1; 0 � t � T and r(t) = 0 at other times. This is referred to as a \square window".

The seond is r(t) = exp(�t=�); 0 � t � T and r(t) = 0 at other times, to simulate the

response of an RC iruit with a time onstant of � . In this note, we take � = 5 ns. Note

that when put in Equation 3, this response funtion de-weights earlier times exponentially.

To ompare F (t)=hF (t)i for di�erent response funtions r(t) and integration times

T , we began by building up distributions of F (t)=hF (t)i on unorrelated measurements. In

Table 1, we give the value of F (t)=hF (t)i whih is exeeded by 2.14% of the measurements.

(A 2.14% probability orresponds to a 2.3 � two-sided ut on a Gaussian distribution. This

is the detetion threshold urrently being used in the ANITA Monte Carlos, and so is used

here for referene.)

We begin by examining a square window of width T = 0:7 ns. We hose a width

of 0.7 ns beause it orresponds to approximately one half-yle of voltage osillation. The

same integration width was used in Setion 4 to measure envelope amplitude and power.

The distribution of this F (t)=hF (t)i is shown in Figure 10. We �nd that a ut at 3.77

leaves us a 2.14% tail, as expeted. The square window of width 0.7 ns gives exatly the

idealized envelope power detetor desribed in Equation 2, and so Figure 10 is an exponential

distribution. In Setion C, we saw that a ut of 3.7 (�

2:7

2

2

) on envelope power orresponds

to a ut of 2.7 on the Rayleigh distribution of envelope amplitudes and � 2:3 � on a Gaussian

distribution. (Here we see that 3.77 is loser to the equivalent ut than 3.70.)
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Next, we take a square window of width T = 7 ns. We hose 7 ns beause we expet

that the physial diode used in the ANITA trigger system will integrate over approximately

this time. The diode will of ourse not have a response funtion r(t) = 1; 0 � t � 7 ns,

but beginning with this simple weighting allows us to separate e�ets of integration time

from e�ets related to the diode response. The distribution of this F (t)=hF (t)i is shown in

Figure 11. We �nd that a ut of 2.86 leaves the desired tails. Figure 11 shows us why the

ut has moved down | the tails of the distribution are lower than those from the response

funtion with T = 0:7 ns. This is beause we are now averaging the power over a longer time

(� 5 osillations of the enter frequeny, and > 1 osillation of the envelope), and so we have

far fewer extreme values. Note that, in fat, this trend ontinues as the integration time is

inreased (see Figure 13 and Figure 14, where we plot the result from a square window 70 ns

wide and another 200 ns wide). As T inreases, we sum over a greater number of envelope

powers, eah drawn from an exponential distribution. The distributions we obtain beome

narrower, and tend toward the Gaussian, by the entral limit theorem. A Gaussian resulting

from a large time windows should be entered at around

F (t)

hF (t)i

= � = 1, as an be seen in

Figures 13 and 14.

Finally, we keep the 7 ns integration time, and inlude an exponential model of

a diode response, r(t) = exp(

�t

�

); 0 � t � T , with � = 5 ns and T = 7 ns. This gives the

distribution of F (t)=hF (t)i shown in Figure 12. Now we �nd that the appropriate ut is

at 1.60. The distribution is very similar to that produed by the 7 ns square window, but

slightly wider. This is beause earlier times are de-emphasized, and therefore F (t) is more

suseptible to extremes.

Up to now, we have been desribing unorrelated measurements. Next, we studied

what sort of trigger rate we might get if we triggered o� the output of eah of the three

integration funtions desribed above using a trigger that takes measurements on the same

trae in �ne time steps. To �nd a trigger rate, the integration funtion is sanned aross

a noise trae, inreasing time t by one step at a time. (Steps are �t = 0:1 ns.) If the

F (t)=hF (t)i exeeds a preset threshold, we ount a trigger, and jump ahead by 50 ns, to

represent the dead time after a trigger. We ount the number of triggers in a given amount

of time in order to �nd a trigger rate. Results are given in Table 2. Note that while the

results in Table 1 are derived from unorrelated measurements, we deal now with orrelated

measurements. One might naively expet that if we use uts for eah integration funtion

suh that the same perentage of measurements are above the ut for eah distribution (i.e.,

3.77 V=� for the 0.7 ns square window, 2.86 V=� for the 7.0 ns square window, et.), we

would obtain the same trigger rate. This is not the ase, as our trigger rate depends on the

number of peaks in F (t)=hF (t)i above threshold, not on the amount of time that F (t)=hF (t)i

spends above threshold. A distribution with many short peaks will produe a greater trigger

rate than a distribution with few long peaks. For examples of the output of F (t)=hF (t)i for

di�erent response funtions ating on the same waveform, see Figures 15, 16, and 17.

The results in Table 2 illustrate this fat. The 0.7 ns square window gives the
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Figure 10: Distribution of F (t)=hF (t)i produed using a response funtion r(t) = 1; 0 �

t � T = 0:7 ns. The distribution is �t to an exponential, with parameters in the box in the

upper right.

highest trigger rate. It has the shortest integration time, and therefore is more prone to

extremes than the other instanes of F (t)=hF (t)i. Beause it hanges more quikly, it has

more peaks. The 7.0 ns square window averages over a larger time, and so has fewer peaks.

The exponential response funtion integrates over more time than the 0.7 ns square window,

and so varies more slowly (has a lesser trigger rate), but it response funtion has a narrower

shape in time than the 7.0 ns square window does, and so varies more quikly (has a greater

trigger rate) than the 7.0 ns square window.

A trigger rate of 2.0 MHz was suggested in [5℄ as a reasonable singles rate for the

ANITA trigger. In Table 3, we show the thresholds required (in terms of F (t)=hF (t)i) for a

noise trigger rate of 2.0 MHz. In partiular, we �nd that our exponential response funtion

diode model (r(t) = exp(�t=5 ns); 0 � t � 7 ns) gives a noise trigger rate of 2.0 MHz when

the threshold is set to 3.9. This mathes well with the threshold on a physial diode in the

lab found in [5℄, suggesting that our diode model is a reasonable �rst approximation of a

physial diode.
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Figure 11: Distribution of F (t)=hF (t)i produed using a response funtion r(t) = 1; 0 � t �

T = 7 ns. Note that the distribution is no longer exponential.
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Figure 12: Distribution of F (t)=hF (t)i produed using a response funtion r(t) =

exp(

�t

5 ns

); 0 � t � T = 7 ns. Note that the distribution is no longer exponential.

13



envelope_hist

Entries  10000
Mean    1.002
RMS    0.2467
Underflow       0
Overflow        0

 / ndf 2χ  0.765 / 40
Constant  0.418± 1.665 
Mean      0.0525± 0.9997 
Sigma     0.0346± 0.2327 

F(t) / <F(t)>
0 0.5 1 1.5 2 2.5 3 3.5 4

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
c
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
envelope_hist

Entries  10000
Mean    1.002
RMS    0.2467
Underflow       0
Overflow        0

 / ndf 2χ  0.765 / 40
Constant  0.418± 1.665 
Mean      0.0525± 0.9997 
Sigma     0.0346± 0.2327 

Figure 13: Distribution of F (t)=hF (t)i produed using a response funtion r(t) = 1; 0 � t �

T = 70 ns. The red line is a Gaussian �t, with parameters given in the box at upper right.

envelope_hist
Entries  10000

Mean   0.9992

RMS    0.1504

Underflow       0

Overflow        0

 / ndf 2χ  0.3518 / 26

Constant  0.663± 2.713 

Mean      0.0309± 0.9989 

Sigma     0.020± 0.145 

F(t) / <F(t)>
0 0.5 1 1.5 2 2.5 3 3.5 4

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
c
y

0

0.5

1

1.5

2

2.5

envelope_hist
Entries  10000

Mean   0.9992

RMS    0.1504

Underflow       0

Overflow        0

 / ndf 2χ  0.3518 / 26

Constant  0.663± 2.713 

Mean      0.0309± 0.9989 

Sigma     0.020± 0.145 

Figure 14: Distribution of F (t)=hF (t)i produed using a response funtion r(t) = 1; 0 � t �

T = 200 ns. The red line is a Gaussian �t, with parameters given in the box at upper right.
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Figure 15: Value of F (t)=hF (t)i over a 200 ns span of a typial simulated noise trae, using

r(t) = 1; 0 � t � T = 0:7 ns.
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Figure 16: Value of F (t)=hF (t)i over a 200 ns span of a typial simulated noise trae (the

same noise trae used in Figure 15), using r(t) = 1; 0 � t � T = 7 ns.
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Figure 17: Value of F (t)=hF (t)i over a 200 ns span of a typial simulated noise trae (the

same noise trae used in Figures 15 and 16), using r(t) = exp(

�t

5 ns

); 0 � t � T = 7 ns.

Integration Type Cut on F (t)=hF (t)i leaving a 2.14% tail

0.7 ns square 3.77 (=

2:7

2

2

)

7.0 ns square 2.86

7.0 ns exponential 2.94

Table 1: Cuts on F (t)=hF (t)i distributions orresponding to a ut at 2.3 � using the Gaussian

formalism, i.e., leaving 2.14% of events in the tail.

Integration Type Trigger Threshold (F (t)=hF (t)i) Trigger Rate

0.7 ns square 3.77 7.7 MHz

7.0 ns square 2.86 4.8 MHz

7.0 ns exponential 2.94 5.5 MHz

Table 2: Using thresholds found in Table 1, the resulting trigger rate.
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Integration Type Trigger Rate Trigger Threshold (F (t)=hF (t)i)

0.7 ns square 2.0 MHz 5.8

7.0 ns square 2.0 MHz 3.6

7.0 ns exponential 2.0 MHz 3.9

Table 3: Thresholds required to obtain a trigger rate of 2.0 MHz

.

6 Conlusions

We have simulated thermal noise in the time domain and shown that its features are in

good agreement with those of noise diode measurements in the laboratory. For the purpose

of making those omparisons, we have shown what a perfet envelope detetor looks like: it

is an integrator that takes measurements with a at response funtion and an integration

time given by

1

2f

0

. We �nd that lengthening the integration time narrows the distribution of

integrator outputs, and then a lower threshold gives the same probability for noise to exeed

the threshold. An exponential response funtion makes an integrator behave like one with a

slightly narrower integration window due to the drop in response for early times.

We then put an integrator into our trigger model. We found that the orrelations bring

about trigger rates that are lower than one might have naively expeted from the umulative

distribution funtions. By then lengthening the integration window, we �nd a lower trigger

rate, even after lowering the thresholds to aount for the lower probability of unorrelated

triggers as disussed in the previous setion.

We �nd that if we use an exponential response funtion to model the trigger diode, we

must set the threshold at 3.9 times the mean response to obtain a trigger rate of 2 MHz.

This is idential to the threshold quoted in [5℄ for the same trigger rate. We also �nd that

a threshold of 2.9 gives a trigger rate of 5.5 MHz, onsistent with Figure 9 of [5℄ (although

this point is slightly o� the plot).

In this note, we have developed the basi tools that we need to model noise and the

trigger diode response, and we are now ready to begin adding Askaryan pulses to the wave-

forms. The �rst order of business is to �nd the appropriate threshold on the Askaryan peak

voltage that orresponds to the diode response of 3.9 and trigger rate of 2 MHz, sine we have

shown that the diode response is not properly modeled by the formalism that uses a Rayleigh

(Riian) distributions to model the noise (noise + signal). There are ompeting e�ets that

might pull the threshold in either diretion: the long integration window allows for lower

thresholds with regard to trigger rates, but they also at to suppress the signal ompared to

noise, so a stronger signal would be required to trigger the system. We ultimately plan to

use a full simulation of a time-domain noise, signal, and trigger in the ANITA Monte Carlo.
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A The Relationship Between a Cut in Voltage and a

Cut in Power

A.1 Instantaneous Noise Voltage Follows a Gaussian Distribution

Knowing that a orret treatment of noise is derived from Riian distributions and proper

modeling of the trigger diode, we use the simple Gaussian treatment of noise voltage for

the purpose of this disussion about ANITA Note 04-002 [5℄. In the past we have modeled

the noise voltage in the simulations with a Gaussian distribution. Under this model, the

probability f that the noise voltage will pass a threshold V

th

an a given instant in time is

given by:

f = 2 �

1

p

2�

1

�

Z

1

V

th

e

�V

2

=2�

2

dV: (4)

The 2 in front aounts for events on the negative tail of the distribution. If we now perform

a hange of variables P = V

2

=R, dP = (2V=R)dV , then after a little algebra we get:

f =

1

p

2�

p

R

�

Z

1

P

th

1

p

P

e

�PR=2�

2

dP: (5)

where P

th

= V

2

th

=R. Here the mean power is hP i = V

2

RMS

=R = �

2

=R, and so this beomes:

f =

1

p

2�

1

q

hP i

Z

1

P

th

1

p

P

e

�P=2hP i

dP: (6)

So, the power distribution is an exponential multiplied by a Jaobian, 1=

p

P .

Cutting on V

th

in voltage gives you the same probability of passing as utting on

P

th

= V

2

th

=R in power.

A.2 Envelopes of the Noise Voltage Follow a Rayleigh Distribution

Although instantaneous snapshots of noise should follow a Gaussian distribution, the enve-

lope of the noise follows a Rayleigh distribution. Under a system that detets noise envelopes,

the probability f that the noise envelope a will exeed a threshold a

th

is given by Goodman

(4.2-6) [2℄:

f =

Z

1

a

th

a

�

2

e

�a

2

=2�

2

da: (7)

In this ase, this integral over amplitudes of voltage envelopes is in fat performed by sub-

stituting power envelope for voltage envelope, I = a

2

=R:

f =

R

2�

2

Z

1

I

th

e

�IR=2�

2

dI; (8)
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where I

th

= a

2

th

=R. This equation is the same as Goodman (4.2-7). Here the mean power

envelope is hIi = 2�

2

=R = 2 hP i as in Goodman (4.2-8), and so this now beomes:

f =

1

hIi

Z

1

I

th

=hIi

e

�I=hIi

dI; (9)

whih is Goodman (4.2-9). Evaluating the integral, we get

f = e

�P

th

=hP i

= e

�a

2

th

=2�

2

: (10)

Notie that for noise amplitude that follows a Rayleigh distribution, envelope of the power

does follow a pure exponential, as seen in Equation 9.

B Where the Formula in J. Middledith's Thesis Comes

From

Formula (45) in Middledith's thesis [4℄ reads (in terms of the variables de�ned in the previous

setions):

I

th

hIi

�

1

2

�

V

th

�

�

2

+ ln

�

r

�

2

�

V

th

�

�

: (11)

This appears to ome from equating:

1

hIi

Z

1

I

th

e

�I=hIi

dI =

1

p

2�

1

�

Z

1

V

th

e

�V

2

=2�

2

dV: (12)

Using:

erf(x) =

2

p

�

Z

1

x

e

�t

2

dt (13)

Equation 12 beomes

e

�I

th

=hIi

= erf

 

V

th

p

2�

!

(14)

From Abramowitz & Stegun,

p

�ze

z

2

erf(z) � 1 + ::: (15)

and so substituting z = V

th

=

p

2� into Equation 15 and inserting into Equation 12 gives:

e

�I

th

=hIi

�

s

2

�

�

V

th

e

�V

2

th

=2�

2

(16)

and if we take the natural log of both sides of Equation 16 we get Equation 11. The

important thing to note is that Equation 12, on whih all of this is based, seems to equate

an integral over a pure exponential in power envelopes, as in the Rayleigh formalism (see
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Equation 8), to an integral over a Gaussian in instantaneous voltages, as in Equation 4.

Therefore, Equation 11 should be used with extreme aution sine the two sides of the

equation desribe di�erent types of detetion systems.

If one is onsistent with their hoie of model for the noise voltage, whether it be

Gaussian or Rayleigh, and perform a hange of variables to power, the relationship between

the uts that one should make in the power domain and voltage domain to obtain the same

singles rates should be P

th

= V

2

th

=R or I

th

= a

2

th

=R.

Equation 11 would, however, be appliable if one were making measurements using

an envelope detetor in the lab and trying to �nd the orresponding ut in instantaneous

voltage in a simulation that models measurements of noise with a Gaussian distribution.

This was indeed the ase at the time Note #4 was posted (if we assume that the power is

measured by an envelope detetor) and so it was appropriate to use a ut on voltage derived

from the measured ut in power and Equation 11. In Note #4, the V

th

=� = 2:3 ame from

a I

th

= hIi = 3:7, satisfying Equation 11.

Now the simulations are moving from the Gaussian model to the Rayleigh/Riian model

and so now, both the noise power measured in the lab and the models for noise voltage in

the simulations are under the Rayleigh formalism, and so the relationship between the uts

in the power and voltage domains would be just I

th

= a

2

th

=R if we had a true envelope

detetor. One has to be areful to remember that hIi = 2�

2

=R as in Goodman (4.2-8) when

solving for V

th

in Equation 11. For example, for a ut on a power envelope at I

th

= hIi = 3:7,

a

th

=

p

I

th

R =

q

3:7 � hIi �R =

p

2 � 3:7 � �

2

= 2:7�.

For referene, we also derive the relationship between power relative to mean power

envelope and a voltage envelope relative to �:

I

hIi

=

a

2

=R

2�

2

=R

=

1

2

�

a

�

�

2

(17)

C Comparing Numbers

For omparing numbers, we set R=1 for simpliity. Table 4 shows the probability for the

noise voltage to pass the trigger at any given instant using Equation 4. Table 5 shows

that one gets the same probabilities if one uts on power instead of voltage, using simply

P

th

= V

2

th

=R and Equation 6.

Table 6 shows the probabilities that you would get if you were to ut on the instanta-

neous power using the equation from Middledith's thesis, reprodued here as Equation 11,

to �nd the threshold in power and using Equation 6 for the power distribution. Notie

that the probabilities in Table 6 are not even a good approximation for those in Tables 4

and 5. This is beause the proper relationship between uts in instantaneous voltage and
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instantaneous power are really P

th

= V

2

th

=R, not the Middledith formula.

Table 7 shows the probability for the noise voltage envelope to pass the trigger at any

given instant using Equation 7, now using the Rayleigh formalism. Table 8 shows that one

gets the same probabilities if one uts on power envelope instead of voltage envelope, using

simply I

th

= a

2

th

=R and Equation 8.

The numbers in bold in the tables orrespond to the ut that we have been using in the

simulations. A ut on instantaneous voltage at V

th

=� = 2:3 using the Gaussian formalism

(Table 4) is equivalent to a ut on P

th

= V

2

th

=R = 5:3 also using the Gaussian formalism and

measuring instantaneous power (Table 5). Both give a probability of 2.14% of passing the

ut for any instantaneous measurement.

If we move to the Rayleigh formalism for an envelope detetor, then the equivalent ut

on the power envelope is obtained from the Middledith formula, Equation 11, giving a ut on

the power envelope at I

th

=

�

1

2

�

V

th

�

�

2

+ ln

�

q

�

2

�

V

th

�

�

�

� hIi =

h

2:3 � 2:3=2 + ln

�

q

�=2 � 2:3

�i

�

2 = 7:4 (see Table 8). Remember that this ut is I

th

= hIi = 3:7, expressed as relative power

of the envelope. The equivalent ut on the voltage envelope is given by a

th

=

p

I

th

R = 2:7

(see Table 7). These uts give a probability of 2.5% of passing the ut of an envelope

detetion measurement. This is lose to the 2.14% obtained from the Gaussian formalism,

remembering that the Middledith formula is an approximation.

The last row of eah of the Tables follow this same proedure through for a higher

ut (5 � in the Gaussian formalism, 5.4 � in the Rayleigh formalism) sine the Middledith

formula should be an even better approximation in that region. There the probabilities are

even loser (5.7E-5 ompared to 5.9E-5).

D Conlusion

Sine the power threshold levels I

th

in Note #4 were set aording to an exponential dis-

tribution in power envelopes, then it is indeed appropriate to use the Middledith formula

to obtain the equivalent ut in instantaneous voltage V

th

, under the Gaussian formalism.

However, one the noise voltage measurement is modeled as envelope detetion, then we

use the Rayleigh distribution to model the noise voltage envelopes a and in that ase the

appropriate ut should be given by a

th

=

p

I

th

�R.

So, for a ut on relative power at 3.7, the appropriate ut on instantaneous voltage

was 2.3 using the Middledith formula. However, one we move to the Rayleigh/ Riian

formalism to model envelope detetion of noise, the ut should inrease to 2.7 to keep the

same singles rate.
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V

th

=� f (%, Voltage Threshold from Equation 4)

2.0 4.55

2.3 2.14

3.0 0.27

5.0 5.73E-5

Table 4: Probability for instantaneous noise voltage to pass a ut using Equation 4.

V

th

=� P

th

= hP i P

th

= V

2

th

=R f (%, Power Threshold from Equation 6)

2.0 4.0 4.0 4.55

2.3 5.3 5.3 2.14

3.0 9.0 9.0 0.27

5.0 25.0 25.0 5.73E-5

Table 5: Probability for instantaneous noise power to pass a ut using Equation 6.

V

th

=� P

th

= hP i P

th

=

�

1

2

�

V

th

�

�

2

+ ln

�

q

�

2

�

V

th

�

�

�

� hP i f (%, Power Threshold from Equation 11)

2.0 2.9 5.8 8.75

2.3 3.7 7.4 5.43

3.0 5.8 11.6 1.58

5.0 14.3 28.7 1.53E-2

Table 6: Probability for instantaneous noise power to pass a ut using Equation 11.

a

th

=� f (%, Voltage Threshold from Equation 7)

2.0 13.5

2.3 7.10

2.72 2.46

3.0 1.11

5.0 3.73E-4

5.35 5.95E-5

Table 7: Probability for a noise voltage envelope to pass a ut using Equation 7. The numbers

in bold show the ut on noise voltage envelope that is equivalent to a ut on instantaneous

noise voltage at 2.3.
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a

th

=� I

th

= hIi I

th

= a

2

th

=R f (%, Power threshold from Equation 8)

2.0 2.0 4.0 13.5

2.3 2.6 5.3 7.10

2.72 3.7 7.4 2.46

3.0 4.5 9.0 1.11

5.0 12.5 25.0 3.73E-4

5.35 14.3 28.7 5.95E-5

Table 8: Probability for a noise power envelope to pass a ut using Equation 8.
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